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I. INTRODUCTION 

While there has been much literature published on the compensation of 

linear control systems, the subject of compensation of nonlinear systems 

has not been so comprehensively treated. This dissertation is an attempt 

to study comprehensively a particular type of nonlinear compensator for im­

proving the performance of a position control system with saturation. 

The phenomenon of saturation may be present inherently in a control 

system due to physical limitations of the devices used in the fixed plant, 

or it may be intentionally introduced by the designer in order to limit the 

magnitude of certain control system variables for safety or economy. 

When saturation occurs in a control system the effect is usually a de­

terioration of system performance from the standpoint of speed of response. 

The overall effect is somewhat similar to a reduction in gain in a linear 

system. In the describing-function approach to the analysis of saturating 

amplifiers (l) the describing function (quasi-linear gain) of an amplifier 

with saturation has a value equal to the nominal gain of the amplifier for 

small sinusoidal inputs and drops off to a small value approaching zero for 

very large inputs. 

The usual effect of a reduction in system gain in a linear control 

system is a slower response and thus a more stable, but sluggish, system. 

An exception to this is the conditionally stable system in which a reduction 

in gain can produce instability. 

Hopkin (2) states that when the control system designer is confronted 

with the problem of saturation there are two alternatives: 1. to elim­

inate the source of saturation or 2. to design the system in such a way as 
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to minimize the effects of saturation and produce a satisfactory design in 

spite of the saturation. 

If the latter of the two alternatives is chosen there are several dif­

ferent methods of compensation to be considered. Chen (3) used a quasi-

linear approach to design a linear compensation network. This compensator 

was placed between the saturating element and the remainder of the control 

elements. Since it is impractical to design a series compensator for high 

power levels, it would seem that this method would not be suitable for com­

pensation of a large-power element. 

The approach of Hopkin (2) was to design a time optimal system and to 

modify this by using a narrow-proportional-band amplifier to control the 

manipulated variable and to give an improved response to a constant veloc­

ity input. 

Chang and Archibald (4) designed a nonlineai* compensator which stored 

energy in a capacitor during the saturation period. The amount of energy 

depended on the time integral of the excess error and was used to prolong 

the period of maximum signal to the power element and thus partially com­

pensate for the loss of energy to the power element during the saturation 

period. The compensator was designed for systems in which linear phase-

lead compensators produced saturation of anplifiers during rapid changes in 

input signals. The describing-function technique along with an analog com­

puter study was used to analyze a type 2 system with saturation. It was 

observed that the compensation was not effective for systems with small 

damping ratios. No attempt was made to determine for what types of sys­

tems the compensator would be most effective or to design the compensator 

by other than trial and error methods. 
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The hysteresis element discussed in this dissertation utilizes the 

principle discussed by Chang and Archibald (4) combined with the concept of 

time optimality (5) to improve the step-input performance of a control sys­

tem with saturation. 

The hysteresis element will be defined as any nonlinear control ele­

ment whose output at certain points is a double-valued function of its in­

put. One of the most common types of hysteresis element is a magnetic re­

lay which, due to hysteresis in the iron core, releases at a considerably 

lower current than is required for operation. The term negative hysteresis 

will be defined in the same manner as was done by Golden and Weaver (6) to 

be the type in which the output in the double-valued region takes on the 

larger of the two values when approached from above, i.e. the relay char­

acteristic or the hysteresis curve for ferromagnetic materials. The linear, 

phase-lead network is analogous to a positive-hysteresis element while the 

phase-lag network is analogous to a negative-hysteresis element. In fact, 

if one is careful not to carry the analogy too far, some insight can be 

gained by comparing nonlinear hysteresis elements with phase-lead or phase-

lag networks. 

Since the effect of saturation in a control system is to reduce the 

apparent low-frequency gain of the system, the compensator should have a 

tendency to increase the low-frequency gain in order to improve the per­

formance of a system with saturation. This is precisely the effect of a 

phase-lag network and would lead one to conclude that the negative-hyster­

esis characteristic possibly might be effective in improving the perform­

ance of such a system. 

It is important to note that while in saturation a control system is 
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essentially operating open-loop and any series compensator placed in front 

of the saturating element has a limited time within which to perform its 

function. That is to say that the compensator must modify the system re­

sponse either before saturation occurs or after the system drops out of 

saturation. The negative-hysteresis element modifies the system by holding 

it into saturation for a period longer than normal. If, in the uncompen­

sated system, the period after dropout is relatively long compared to the 

duration of saturation, the hysteresis compensator may have a marked in­

fluence on the system response, otherwise it probably will prove ineffec­

tive as a conçensator. In this respect the nonlinear-hysteresis element 

differs from a linear system whose form of response is unaffected by the 

magnitude of its inputs. 

The purpose of this dissertation is to study the hysteresis element 

used as compensation for saturation with the following goals in mind: 

1. To arrive at a procedure for the design of hysteresis condensation 

which eliminates as much trial and error as possible. 

2. To determine the type of systems for which hysteresis can be ef­

fective. 

3. To verify the results of 1 and 2 by means of an analog-computer 

study. 
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II. COMPENSATION FOR SATURATION USING HYSTERESIS ELEMENTS 

A. Analytical Considerations 

The control system shown in Figure 1 is a typical second-order, posi­

tion-control system consisting of an error-sensing device, a power ampli­

fier, and an armature-controlled, direct-current motor. The power amplifier 

is assumed to have the hard-saturation type of input-output characteristic. 

This particular form of nonlinearity was chosen because it is sectionally 

linear, thus facilitating analytical calculation of the system response, 

and because it can be simulated with ease on an analog computer. It has 

been found in practice that the simulation of actual nonlinearities by sec­

tionally linear curves can give satisfactorily accurate results for most 

problems. 

The closed-loop transfer function of the system when operating in the 

linear region is given by the following equation. 

When the system error is large enough that the power amplifier is sat­

urated, the system is operating open-loop with a constant input voltage to 

the motor equal to the saturation level of the power amplifier. The re­

lationship between the Laplace transforms of the motor input and output is 

given by the following equation. 

2 U) 
o (1) 

o o 
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and hysteresis compensator 



www.manaraa.com

7 

v(s) " s(,s + 2 J U3^) (2) 

Since the system is sectional 1y linear, its error response to an ini­

tial disturbance of the output variable larger than the saturation level 

of the amplifier cam be calculated einalytically by using two different sets 

of lineELT differential equations to describe the response of the system 

during the saturated period and during the linear period. During the sat­

uration period the error response is described by the following equation. 

Here the dot notation is used to indicate the derivative with respect to 

time. 

After the system error is reduced below the saturation level, the er­

ror response is described by the equation, 

The calculation of the error response of the compensated system is 

identical to that of the uncompensated system with the exception that the 

duration of saturation is prolonged by the congensator. A block diagram 

of the compensated system is shown in Figure 2. The emphasis on error re­

sponse is a matter of convenience. It can be shown that the response of 

"ê + SfWo ê = + Sg (3) 
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the system to a step input has the same form as the error response of the 

autonomous system subjected to an initial position disturbance. 

If the cong)ensator is to iriç>rove the speed of response of the system, 

the inprovement would have to be accomplished at the expense of increasing 

the overshoot in ail except the extremely overdanrped case. This means that 

the dropout point should be chosen so as to obtain the fastest response 

possible without exceeding the maximum allowable overshoot. 

Although the previously outlined method can readily be used for the 

analysis of the system once the dropout point has been chosen it does not 

lend itself readily to aiding in determining -'•here the dropout point should 

be. A better approach to the problem from the standpoint of designing the 

compensator is the use of a phase-plane plot. This method requires the 

construction of two phase-plane trajectories, one for the second-order, 

autonomous, linear system with no saturating element where the initial con­

dition is a displacement from the equilibrium position, and another for 

the open-loop system subjected to a constant voltage input equal to the 

saturation voltage and starting from rest at the initial displacement. 

Both trajectories are time-scaled either by graphical means or by calcula­

tion of the time response. The graphical method, if carefully done, seems 

to give sufficiently accurate results with much less work. 

To illustrate the use of the phase-plane technique in the design of a 

nonlinear compensator, a problem will be worked for the system of Figures 

1 and 2 with a dançing ratio, J , of 0.8 and a saturation level of 0.5 

units. 

The normalized differential equation for the linear system is 
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ê + 2 ïè + e = 0 (5) 

and that for the system while in saturation is 

'ê + 2 X ê = +0.5 (6) 

It will be assumed that the system is subjected to a maximum initial dis­

placement of 1.0 units, which is considerably above the saturation level 

of the power amplifier. It will also be assumed that it is desired to an­

alyze the response for smaller initial displacements and to have a maximum 

overshoot of approximately 0.05 units. 

1. Construction of phase-plane trajectories 

The first step is the plotting and time-scaling of trajectory 1 in 

Figure 3 which is the trajectory of the motor and load with a constant 

voltage of -O.5 units starting from the initial point of e = -1.0. The 

next step is to plot and time-scale a trajectory for the linear system. 

This trajectory extends from the initial point at e = -1.0 to the first 

overshoot and is called trajectory 3 in Figure 3-

It should be pointed out here that trajectory 3 contains the informa­

tion needed for plotting all other trajectories for the unsaturated system 

since the linear trajectory for a smaller initial displacement is merely 

a scaled-down version of trajectory 3- Both trajectories were plotted 

using Pell's method (7). Tlie response for the uncompensated system can 

be obtained 
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Figure 3. Time-scaled trajectories used to design hysteresis 
compensator (timing marks spaced 0.4 time units 
apart) (l) saturated trajectory, (2) after-
dropout trajectory, and (3) linear trajectory 
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by following trajectory 1 until the error is reduced to the saturation 

level of the amplifier and then following a linear trajectory for the re­

mainder of the response. Point a on Figure 3 is the point where the un­

compensated system drops out of saturation. It is found to be approximate­

ly 3-8 time units on a normalized time scale from the first overshoot. 

This is determined by drawing a line from the origin through point a inter­

secting trajectory 3 at point b and then counting the time units from 

point b to the first overshoot. The points on Figure 3 are plotted with 

0.4 time units between adjacent points. An alternate method is to com­

plete the uncompensated trajectory from point a to the origin and then 

place a time scale directly on it. This was done on Figure 3 in order that 

the time response could be read directly from the phase-plane plot. This, 

however, is not necessary since trajectories 1 and 3 contain all the infor­

mation that is required for obtaining the time response of the saturated 

system for any initial position and any dropout point. For example, with 

an initial error of -0.8 units the time response while the system is sat­

urated caxi be obtained by reading time values from trajectory 1 and sub­

tracting 2 units from the error magnitude at that point. From Figure 3 it 

can be seen that the dropout point would occur at a point with coordinates 

(-0.5J 0.285) which corresponds to 1.6 time units on trajectory 1. If the 

line Oa'b* is drawn through the new dropout point it will be seen to inter­

sect trajectory 3 at a point corresponding to T = O.85 on trajectory 3-

The remainder of the time response can be determined by the following steps: 

1. Determining the scale factor relating the linear portion of the 

new trajectory with trajectory 3- In this case it is the ratio 

Oa'/Ob' which is approximately 0.659-
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2. Relate the time-scale on trajectory 3 to the new trajectory by 

noting that the point I = 0.85 on trajectory 3 corresponds to 1.6 

seconds on the new trajectory, i.e. = T + 0.75. 

3- Coir̂ ute values for time and position for the remainder of the re­

sponse by taking points on trajectory 3, multiplying the magnitude 

by the ratio Oa'/Ob' and adding 0.75 seconds to the time taken 

from the linear trajectory. 

Although the above procedure may seem to be an indirect method of obtaining 

the time response, it does have the advantage that it is necessary to plot 

and time-scale only one set of phase-plane trajectories to calculate the 

time response for a number of different sets of initial conditions. 

2. Design of the nonlinear compensator 

An attempt will be made to improve the response time of the system for 

step inputs through the use of a nonlinear hysteresis element whose function 

is to hold the system in saturation for a period longer than normal. The 

congensator makes it possible to obtain the maximum control effort from the 

motor for a longer period of time than would be possible with the uncompen­

sated system. The above point is illustrated by Figure 4 which shows the 

input signal to the motor for the response of a second-order system with an 

initial error of 1.0 units and a damping ratio of 0.8. Curves a, b, and c 

of Figure 4 show the motor input for the uncompensated, compensated, and 

linear systems respectively. 

An inspection of Figure 3 will show that the dropout point can be 

chosen anywhere between points a and c on trajectory 1. Since all points 

on trajectory ac represent higher velocities than do corresponding points 

on trajectory aO, it follows that the system will reach zero error most 
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Figure 4a. 

0.6 — 

T/Me /u ̂ eco^os 
Motor input versus time for uncompensated, system of Figure 
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Figure 4b. 
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Motor input versus time for hysteresis conçensated sys­
tem of Figure 2 with damping ratio of 0.8 and an initial 
error of 1.0 units. 
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Figure 4c. Motor input versus time for system without saturation 
with damping ratio of 0.8 and an initial error of 1.0 
units 
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rapidly if it remains saturated until the error is reduced to zero. If it 

is desired that the system reach zero error in the minimum possible time 

with no consideration given to overshoot, point c should be chosen as the 

dropout point. If, however, a limit is to be placed on overshoot, the drop­

out point will be chosen somewhere between points a and c on trajectory 1. 

In this example the dropout point will be chosen so as to limit the over­

shoot to approximately 0.05 units. The dropout point can be determined 

by constructing a third trajectory for the linear system (see Figure 3) 

starting from point d which corresponds to an overshoot of 0.05 units and 

extending the trajectory backwards to point e where it intersects trajec­

tory 1. This new trajectory will be called trajectory 2. The value of 

the error at point e is the dropout point that will give the fastest pos­

sible response to a step input without exceeding the overshoot limit. From 

Figure 3 it can be seen that the error at the dropout point is 0.l4 units. 

The trajectory of the compensated system will follow trajectory 1 

from the initial point to the dropout point aind then will follow trajec­

tory 2 to the origin. 

3. Calculated results 

The results of the calculations are tabulated in Tables 1 through 3 

for the second-order system with a damping ratio of 0.8. These calculated 

points will be later superinçosed on the experimental time response curves 

of Figures 9 through 11. 

Data from similar calculations made with damping ratios of 1.0 and 

0.5 are shown in Tables 4 through 6 and Tables 7 through 9 respectively. 
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Table 1. Calculated time response of system with damping ratio 0.8, 

initial error of 1.0 and dropout point of 0.l4 

12 3 

Uncompensated 

T — 
% 

T 

Compensated 
e 

0̂ 
I 

Linear 
e 

% 

0 1.00 0 1.00 0 1.00 

0.4 0 . 9 7  0.4 0.97 0.4 0 . 9 3  

0.8 0.90 0.8 0.90 0.8 0 . 7 8  

1.2 0.80 1.2 0.80 1.2 0.61 

1.6 0.69 1.6 0.69 1.6 0.46 

2.0 0.58 2.0 0.58 2.0 0.30 

2 . 4  0.46 2.4 0 . 4 6  2 . 4  0.19 

2.8 0.36 2.8 0.36 2.8 0.11 

3.2 0.26 3.2 0.26 3.2 0.06 

3-6 0.17 3.5 o.i4 3.6 0.02 

4.0 0.11 3.9 0 . 0 3  4 . 0  0 

4.4 0.06 4.11 0 4.6 -0.02 

4.8 0.03 4.5 -o.o4 

5.2 0.01 5.1 - o . o 4  
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Table 2. Calculated time response of system with damping ratio of 0.8, 

initial error of 0.8 and dropout point of 0.l4 

12 3 

Uncompensated Compensated Linear 

T — T — T — 
e e e 

0 1.00 0 1.00 0 1.00 

0.4 0 . 9 6  0.4 0.96 0 . 4  0.93 

0 . 8  0 . 8 7  0.8 0.87 0.8 0.78 

1.2 0 . 7 5  1.2 0.75 1.2 0.61 

1.6 0.62 1.6 0.62 1.6 0 . 4 6  

1.75 0.57 2.0 0 . 4 8  2.0 0.30 

2 . 3 5  0 . 3 8  2 . 4  0 . 3 4  2 . 4  0.19 

2.75 0.25 2.86 0.18 2.8 0.11 

3 . 1 5  0.16 3.06 0.10 3.2 0.06 

3 . 5 5  0.09 3 . 4 6  0 3.6 0.02 

3 . 9 5  0.05 3.86 -0.05 4.0 0 

4 . 3 5  0 . 0 2  4.21 -0.06 4.6 -0.02 

4.75 0 
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Table 3- Calculated time response of system with daniping ratio of 0.8, 

initial error of 0.6 and dropout point of 0.l4 

12 3 

Uncompensated Compensated Linear 

 ̂ ip  ̂  ̂
e e e 

0 1.00 0 1.0 0 1.00 

0.4 0 . 9 5  0.4 0 . 9 5  0.4 0.93 

0 . 8  0 . 8 3  0.8 0.84 0.8 0.78 

1.2 0 . 6 7  1.2 0.67 1.2 0.61 

1.6 0 . 5 1  1.6 0.48 1.6 0.46 

2.0 0.36 2.0 0.30 2.0 0.30 

2.4 0.24 2.2 0.22 2.4 0.19 

2 . 8  o.i4 2.4 0.133 2 . 8  0.11 

3.2 0.08 2.8 0 . 0 2  3.2 0.06 

3.6 o.o4 3.2 -0.03 3.6 0.02 

4.2 0 3.6 -0.07 4.0 0 

4.8 -0.01 3.9 -0.07 4.6 -0.02 
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Table Calculated time response of system with daiiging ratio of 1.0, 

initial error of 1.0 and dropout point of 0.055 

1 2  3  

Uncompensated Compensated Linear 

 ̂ T  ̂ T  ̂
e e e 

0 1.00 0 1.00 0 1.00 

o.k 0.96 0.4 0.96 0.4 0.94 

0.8 0.89 0.8 0.89 0.8 0.81 

1.2 0.81 1.2 0.81 1.2 0.66 

1.6 0.72 1.6 0.72 1.6 0.52 

2.0 0.63 2.0 0.63 2.0 o.4o 

2.4 0.54 2.4 0.54 2.4 0.30 

2.8 0.44 2.8 0.44 2.8 0.23 

3.2 0.36 3.2 0.34 3.2 0.17 

3 . 6  0.28 3.6 0.24 3.6 0.13 

k.o 0.22 4.0 o.i4 4.0 0.09 

k.k 0.17 4.34 0.05 5.0 o.o4 

4.8 0,13 4.54 0.01 6.0 0.005 

5.2 0.09 4.74 -0.01 

5.6 0.07 4.94 -0.03 

6.0 0.05 5.14 -o.o4 

6.4 0.03 5.54 -0.05 

6.8 0.015 
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Table 5. Calculated time response of system with damping ratio of 1.0, 

initial error of 0.8 and dropout point of 0.055 

1 2 3  

Uncompensated Compensated Linear 

T — T — T — 
e_ e e 

0 1.00 

0 . 4  0.95 

0.8 0.86 

1.2 0.76 

1.6 0.65 

2.0 0.55 

2.4 0.45 

2.8 0.35 

3.2 0.29 

3.6 0.21 

4.0 0.16 

k.k 0.11 

4.8 0.09 

5.2 0.06 

0 1.00 

0.4 0.95 

0.8 0.86 

1.2 0.76 

1.6 0.65 

2.0 0.54 

2.4 0.43 

2.8 0.30 

3.2 0.18 

3.54 0.06 

3.74 0.013 

3.94 -0.013 

4.i4 -o.o4 

4.34 -0.05 

4.54 -0.06 

4.74 -0.06 

0 1.00 

0.4 0.94 

0.8 0.81 

1.2 0.66 

1.6 0.52 

2.0 o.4o 

2.4 0.30 

2.8 0.23 

3.2 0.17 

3-6 0.13 

4.0 0.09 

5.0 o.o4 

6.0 0.005 
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Table 6. Calculated time response of system with damping ratio of 1.0, 

initial error of 0.6 and dropout point of 0.055 

12 3 

Uncompensated Compensated Linear 

T — T — T — 
e_ e e 

0 1.00 

0.4 0.92 

0.8 0.82 

0 . 9 5  0.79 

1.35 0. 6 4  

1.75 0.51 

2.15 0.39 

2 . 5 5  0.29 

2 . 9 5  0.22 

3 . 3 5  0.165 

3 . 7 5  0.126 

4.15 0.087 

5 . 1 5  0 . 0 3 9  

6 . 1 5  0.049 

0 1.00 

0 . 4  0.94 

0.8 0.82 

1.2 0.68 

1.6 0.53 

2.0 0.38 

2 . 4  0.23 

2.8 0.07 

3.0 0.02 

3.2 -0.03 

3. 4  -0.05 

3.6 -0.07 

3.8 -0.08 

4.0 -0.08 

0 1.00 

0 . 4  0.94 

0.8 0.81 

1.2 0.66 

2.0 o . 4 o  

2 . 4  0.30 

2.8 0.23 

3.2 0.17 

3.6 0.13 

4.0 0.09 

5.0 o . o 4  

6.0 0.005 
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Table ?• Calculated time response of system with damping ratio of 0.5? 

initial error of 1.0 ajid dropout point of 0.215 

1 ' 2 3 

Uncompensated Compensated Linear 

T — T T — 
e -e e 

0 1.00 0 1.00 0 1.00 

o .h  0.96 0.4 0.96 0.4 0.92 

0.8 0.88 0.8 0.88 0.8 0.74 

1.2 0.73 1.2 0.73 1.2 0.67 

1.6 0.58 1.6 0.58 1.6 0.32 

1.8 0.50 1.8 0.50 2.0 0.11 

2.0 0 . 4 2  2.0 o.4i 2.4 -0.03 

2.4 0.25 2.4 0.21 2.8 -0.12 

2.8 0.09 2.8 o.o4 3.2 -0.17 

3.2 0.024 3.2 -0.08 3.6 -0.16 

3-6 0.094 3.6 -0.15 4.0 -o.i4 

4 . 0  0.133 4.0 -0.17 

k .k  0.126 4.6 -o.i4 
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Table 8. Calculated time response of system with damping ratio of 0 . 5 ,  

initial error of 0.8 and dropout point of 0.215 

Uncompensated 

T — 
e o 

T 

Compensated 
e 
e 
0 

T 

Linear 
e 
e 
0 

0 1.00 0 1.00 0 1.00 

0.4 0.95 0.4 0.95 0.4 0.92 

0.8 0.85 0.8 0.85 0.8 0.74 

1.2 0.66 1.2 0.66 1.2 0.67 

1.3 0.62 1.4 0.58 1.6 0.32 

1.8 0.39 2.0 0.23 2.0 0.11 

2.2 0.18 2.2 o.i4 2.4 -0.03 

2.6 0.03 2.6 -o.o4 2.8 -0.12 

3.0 -0.07 3.0 -0.15 3.2 -0.16 

3.4 -o.i4 3.4 -0.21 4.0 -o.i4 

3.8 -0.16 3.8 -0.20 

4.2 -o.i4 4.2 -0.18 
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Table 9. Calculated time response of system with damping ratio of 0.5, 

initial error of 0.6 and dropout point of 0.215 

T 

1 

Uncompensated 
e 
e 

0 

T 

2 

Compensated 
e 
e 

0 

Ï 

3 
Linear 

e 

®0 

0 1.00 0 1.00 0 1.00 

0.4 0.95 0.4 0.92 0.4 0.92 

0.7 0.85 0.8 0.80 0.8 0.74 

0.9 0.74 1.2 0.33 1.2 0.67 

1.3 0.665 1.5 0.36 1.6 0.32 

1.7 0.318 1-9 0.15 2.0 0.11 

2.1 0.11 2.3 -o.o4 2.4 -0.03 

2.5 -0.03 2.7 -0.165 2.8 -0.12 

2.9 -0.12 3.1 -0.23 3.2 -0.16 

3.3 -0.17 3.5 -0.22 4.0 -0.l4 

3.7 -0.16 3.9 -0.19 

4.1 -o.i4 4.9 -0.07 

5.1 -0.05 
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B. Analog Computer Study 

1. Simulation of the nonlinear system 

As verification of the calculations the systems shown in Figure 1 and 

Figure 2 were simulated on an analog computer and recordings were made of 

both the time response and the phase-plane trajectories of the compensated 

and uncompensated systems. 

Figure 5 shows the analog computer circuit used to simulate the hys­

teresis compensator and saturating amplifier while Figures 6a, 6b, axid 6c 

show the input-output characteristic of the hysteresis compensator, the 

saturating amplifier, and the combined characteristic. The analog computer 

circuit for simulating the entire system is shown in Figure 7-

The timing pulses for obtaining time-scaled, phase-plane trajectories 

were provided by the circuit of Figure 8. These timing pulses were, fed in­

to the y-axis of the x-y plotter along with the error-velocity signal. The 

timing circuit differentiates a square wave generated by a low-frequency 

signal generator. The pulses thus obtained operate an auxiliary relay 

which locks up through a holding circuit and starts the problem on the com­

puter by closing a circuit to the operate relay on the analog computer. 

The effect of the residual magnetism of the relay makes it possible to 

cause the relay to operate on pulses of one polarity only. The limiter 

shown on amplifier 11 of Figure 8 is set to eliminate either all positive 

or A,11 negative pulses, depending on which pulses are not wanted, and to 

limit the amplitude of the desired pulses. If the computer time is made 

slow enough relative to the pulse duration, the pulses produce convenient 

timing marks on the phase-plane trajectories. The trajectories obtained 
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Figure 5. Analog conçuter simulation of hysteresis compensator 
and limiter 
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Figure 8. Analog conrouter connections for obtaining timing pulses 
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in this manner are shown in Figures l8 through 26. 

2 .  Results of the computer study 

Recordings of the time responses for each of the systems studied pre­

viously are shown in Figures 9 through 17. For comparison the calculated 

results are superimposed on the recorded curves. Tabulated values of de­

lay time, rise time, settling time, amount of overshoot, and percentage 

overshoot are given in Tables 10 through 12. The following definitions are 

used for the first three quantities mentioned above: 

1. The delay-time, T̂ , is defined as the time required for the step 

response to reach 50 percent of its total change. 

2. The rise time, T̂ , is defined as the time for the system response 

to go from 10 percent to 90 percent of its total change. 

3. The settling time, T̂ , is defined as the shortest time required 

for the system error to be reduced to a magnitude of 0.05 units. 

(This is not the usual definition of settling time but it is more 

meaningful in this case). 
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Figure 9. (l) Uncompensated, (2) compensated, and (3) linear 
error response recordings with superimposed calculated 
points for a system with damping ratio of 0.8 and initial 
error of 1.0 
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Figure 10. (l) Uncônçensated, (2) compensated, and (3) linear 
error response recordings with superimposed calculated 
points for a system with damping ratio of 0.8 and ini­
tial error of 0.8 
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Figure 11. (l) Uncompensated, (2) compensated, and (3) linear 
error response recordings with superimposed calculated 
points for a system with damping ratio of 0.8 and ini­
tial error of 0.6 
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Figure 12. (l) Uncompensated, (2) compensated, and (3) linear 
error response recordings with superimposed calculated 
points for a system with damping ratio of 1.0 and ini­
tial error of 1.0 
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Figiire 13. (l) Uncompensated, (2) condensât ed, and (3) linear 
error response recordings with superimposed calculated 
points for a system with damping ratio of 1.0 and ini­
tial error of 0.8 
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Figure l4. (l) Uncompensated., (s) compensated, and (3) linear 
error response recordings with superimposed calculated 
points for a system with dairç)ing ratio of 1,0 and ini­
tial error of 0.6 
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Figure 15. (1) Uncompensated, (2) compensated, and (3) linear 
error response recordings with superiirposed calculated 
points for a system with dançing ratio of 0.5 and ini­
tial error of 1.0 
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Figure l6. (l) Uncompensated., (2) conçensated, and (3) linear 
error response recordings with superimposed calculated 
points for a system with damping ratio of 0.5 and ini-
ttial error of 0.8 



www.manaraa.com

36 

0.1 

- 0.1 

-0.7 

'0.9 

/O 
NORMAL! Zeù TIMË 

Figure 17. (l) Uncompensated, (2) compensated, and (3) linear 
error response recordings with superimposed calculated 
points for a system with darrçing ratio of 0.5 and ini­
tial error of 0.6 
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Figure l8. (l) Uncompensated, and (2) compensated phase-plane trajectories 
for system with damping ratio of 0.8 and initial error of 1.0 
(timing marks at 0.5-second intervals) 
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Figure 19- (l) Uncompensated and (2) compensated phase-plane trajectories 
for system with dâ nping ratio of 0.8 and initial error of 0.8 
(timing marks at 0.5-second intervals) 
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Figure 20. (l) Uncompensated and (2) compensated phase-plane trajectories 
for system with dajiçjing ratio of 0.8 and initial error of 0.6 
(timing marks at 0.5-second intervals) 
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Figure 21. (l) Uncompensated and (2) coirçensated phase-plane trajectories 
for system with damping ratio of 1.0 and initial error of 1.0 
(timing marks at 0.5-second intervals) 
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Figure 22. (l) Uncompensated, and (2) compensated phase-plane trajectories 
for system with damping ratio of 1.0 and initial error of 0.8 
(timing marks at 0.5-second intervals) 
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Figure 23. (1) Uncompensated and (2) compensated phase-plane trajectories 
for system with damping ratio of 1.0 and initial error of 0.6 
(timing marks at 0.5-second intervals) 
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Figure 2 k .  (l) Uncompensated, and (2) compensated phase-plane trajectories 
for system with damping ratio of 0.5 and initial error of 1.0 
(timing marks at 0.5-second intervals) 
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Figure 25. (l) Unconçensated and (2) compensated phase-plane trajectories 
for system with damping ratio of 0.5 and initial error of 0.8 
(timing marks at 0.5-second intervals) 
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Figure 26. (l) Uncompensated and (2) conç)ensated phase-plane trajectories 
for system with damping ratio of 0.5 and initial error of 0=6 
(timing marks at 0.5-second intervals) 
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Table 10. Calculated results 

Type System Damping Ratio Initial Error T̂  T̂  T̂  Overshoot io Overshoot 

Linear 0.8 1.0 1.50 2.60 3.60 0.01 1.00 

Uncompensated 
With Saturation 0.8 1.0 2.30 3.50 4.̂ 0 O.OO8 0.80 

Compensated 
With Saturation 0.8 1.0 2.30 3.00 3.95 0.06 6.00 

Linear 0.8 0.8 1.57 2.60 3.50 O.OO8 1.00 

Uncompensated 
With Saturation 0.8 0.8 2.00 3.00 4.10 O.OO8 1.00 

Compensated 
With Saturation 0.8 0.8 2.00 2.40 3.35 0.06 7.50 

Linear 0.8 0.6 1.57 2.60 3.20 O.OO6 1.00 

Uncompensated 
With Saturation 0.8 0.6 I.60 2.65 3.30 O.OO6 1.00 

Compensated 
With Saturation 0.8 0.6 1.50 2.00 2.50 0.03 5.00 
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Table 11. Calculated results 

Type System Damping Ratio Initial Error T. T T Overshoot °Io Overshoot 
s 

Linear 

Uncompensated 
With Saturation 

Compensated 
With Saturation 

Linear 

Uncompensated 
With Saturation 

Compensated 
With Saturation 

Linear 

Uncompensated 
With Saturation 

Compensated 
With Saturation 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 1.0 

1.0 0.8 

o.( 

1.0 0.8 

1.0 0.6 

1.0 0.6 

1.0 0.6 

1.75 

2.60 

2.60 

1.75 

2.20 

2.20 

1.75 

1.80 

1.70 

3.50 

4.40 

3.40 

3.50 

3.90 

2.85 

3.50 

3.50 

2.02 

5.00 

6.30 

4.50 

4.50 

5.10 

0 

0.05 

0 

0 

3.60 0.05 

4.30 0 

4.31 0 

2.80 0.05 

0 

5.00 

0 

0 

6.25 

0 

0 

8.33 
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Table 12. Calculated results 

Type System Dancing Ratio Initial Error T_ T T Overshoot °lo Overshoot 
d. r s 

Linear 0.5 1.0 1.30 ' 1.70 5.4 0.17 17.0 

Unconçensated 
With Saturation 0.5 1.0 1.80 2.20 6.00 0.13 13.0 

Compensated 
With Saturation 0.5 1.0 1.80 2.00 6.00 0.17 17.0 

Linear 0.5 0.8 1.30 1.70 5-30 O.136 17.0 

Uncoiiç)ensated 
With Saturation 0.5 0.8 I.60 I.90 5.80 0.12 l4.0 

Compensated 
With Saturation 0.5 0.8 I.60 I.80 5.7 0.152 1$.0 

Linear 0.5 0.6 1.30 1.70 5.00 0.102 17.0 

Uncompensated 
With Saturation 0.5 0.6 I.50 I.65 5.00 0.102 17.0 

Compensated 
With Saturation 0.5 0.6 1.50 1.50 5.00 0.132 22.0 
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C. Conclusions 

Both the calculated results and the results of analog computer simula­

tion point to the following conclusions: 

1. Hysteresis compensation is most effective in systems having a 

large danging ratio. In fact, Figures 12, 13, and l4 and Table 11 

show that for a critically damped system it is possible to have a 

faster settling time for the saturated system with compensation 

than is possible if no saturation is present. 

2. Improvement in speed of response is made at the expense of in­

creased overshoot. 

3. The upper bound on overshoot is controlled by the dropout point 

of the conçensator and can be set rather precisely. 

4. The hysteresis compensator is most effective when the initial 

error conditions just slightly exceed the saturation level. 

5. The fastest allowable response time for a given system can be ob­

tained by setting the dropout point of the compensator as low as 

possible without exceeding the limits on overshoot. 

It has previously been shown that a second-order system with hard 

saturation and a hysteresis compensator can be analyzed for design purposes 

either by graphical methods or by using linear techniques. The analysis 

by linear methods is made possible by the fact that the input-output char­

acteristic of the amplifier and of the amplifier-compensator combination 

can be broken up into linear sections. The graphical method is subject to 

no such limitations and thus could be applied to any nonlinearity of the 

saturation type. 
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III. QUASI-OPTIMIZATION USING HYSTERESIS ELEMENTS 

A possible step in determining the usefulness of a hysteresis element 

for improving the step response of a position-control system with hard sat­

uration would be to determine the time-optimum response of the system and 

to attempt, through the use of the hysteresis compensator, to obtain a tra­

jectory as near as possible to the time-optimum trajectory. The time-opti­

mal system has been shown by a number of writers, among them Bellman (8), 

Kalman (5), and Pontryagin (9), to be a system that ençloys its maximum 

available effort at all times and switches the polarity of its effort at 

the optimum moments. 

Before an attenç)t is made to improve the response time of a system, it 

might be helpful to investigate how close its response is to the response 

of a similar time-optimal system. If the step response of a given system 

is already almost optimal for the elements used in the system; it would be 

difficult, if not impossible, to make a noticeable improvement short of 

completely re-designing the control elements. 

To illustrate the above point a comparison will be made between a sec­

ond-order servomechanism with hard saturation and a similar system working 

in conjunction with a time-optimal-relay controller. The two block dia­

grams are shown in Figures 27a and 27b. 

In the saturated system the amplifier saturates at an error of 0.5 

units. The controller of the time-optimal system has an output of 0.5 

units and changes sign as a function of e and é in such a way that the sys­

tem moves with maximum speed to the switching boundary at which time the 

polarity of the motor input is reversed to decelerate the system along the 
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Figure 27b. Time-optimal system 
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optimum trajectory to the origin of the phase-space. A more complete dis­

cussion of time-optimal systems can be found in most texts on nonlinear 

controls, among them are texts by Gibson (lO), Thaler and Pastel (ll), and 

Cosgrift (12). The phase-plane trajectory for the saturated system is 

plotted in the same manner as was done in Section II. The time-optimal 

system is described by Equation 6 during the time from the initiation of 

the problem until it reaches the switching trajectory, at which time the 

polarity of the controller output is reversed. During deceleration the 

time-optimal system is described by the differential equation 

e' + 2 % è =-0.5 (7) 

It can be seen that Equation 7 is the same as Equation 6 except that the 

sign of the driving function is reversed. It is now convenient to plot the 

deceleration trajectory by Pell's method (7) or by any other method that is 

desired. It is known that the optimum deceleration trajectory ends at the 

origin of the phase-space and therefore it is convenient to plot the de­

celeration trajectory backwards starting at the origin. 

The trajectories for the uncompensated system, the hysteresis-com­

pensated system, and the time-optimal system are shown in Figure 28. The 

trajectories for the uncompensated system and the time-optimal system are 

seen to be identical in the region where the error is larger than 0.5 

units. In the region where the error is between 0.5 units and zero, the 

trajectory of the time-optimal system passes through the points B,D , and 

0 and lies above the linear portion of the trajectory of the uncompensated 

system. Therefore the optimal system traverses its trajectory from point 
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optimal trajectories for system \rith damping ratio 
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Figure 29. Curves of reciprocal error rate versus error for 
uncompensated, compensated, and time optimal system 
with damping ratio of 1.0 
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B to point 0 in less time than does the uncompensated system. Since the 

two trajectories are identical from point A to point B, the maximum time 

that could be gained by any compensation method is the difference in time 

required to traverse trajectories 3D0 and BO. 

The time required for the system to move from a point designated ê  

to a point designated ê  can be determined in the following manner: By 

definition 

i (8) 

It follows that 

dT = — (9) 

and thus we can obtain 

Î2 
T = ̂  - de (10) 

ei ® 

Graphically, Equation 10 can be interpreted as the area, between the lines 

e and e„, which lies under the curve of ̂  versus e. Figure 29 shows such 
12 e 

curves for the systems of Figures 27a and 27b with initial errors of 1.0 

units and 0.8 units. The settling time of the system can be computed as 

the area under the curves that lies between the initial error and an error 

of 0.05 units. It can be seen that if the initial error is large enough so 
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that the system is velocity-limited, the difference between the settling 

times of the two systems is a constant. If the difference in response 

time is calculated on a percentage basis, the response of the uncompensated 

system is more nearly optimal for very large, initial errors than for 

small, initial errors. In view of this fact one might expect that on a per­

centage basis very little can be done to improve the time response of a sat­

urated system when the input is a very large step function. On the other 

hand, if the largest input step that the system is to be subjected to is 

only slightly above the saturation level, it may be possible to consider­

ably shorten the response time through the use of a hysteresis compensator. 

It was stated previously that the compensating device would be chosen 

to reduce an initial error to zero as rapidly as possible without exceeding 

some upper bound on overshoot as specified by the particular problem at 

hand. To accomplish this one might choose the dropout point of the hys­

teresis element to give an after-dropout trajectory as nearly like the de­

celeration trajectory of the optimal system as is possible without exceed­

ing the overshoot limitations. In cases where the overshoot must be small, 

the after-dropout trajectory may be determined by the allowable overshoot. 

If a hysteresis-element compensator is added to the system of Figure 

27a and the dropout point is chosen to give a maximum overshoot of 0.05 

units, the trajectory is as shown by the dotted line on Figure 28. It can 

be seen that this trajectory is much closer to the optimal trajectory than 

that of the uncompensated system. The reciprocal-velocity cui-ve for the 

compensated system in Figure 29 shows that the settling times of the two 

systems would be very nearly the same. If the maximum overshoot of 0.05 

units is tolerable, the step response of the compensated system would be 
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just as good for all practical purposes as the time-optimal system. 

The previous congarison illustrates that for a critically-danced sys­

tem with hard saturation, a hysteresis compensator can mâ ce the step re­

sponse of the system very nearly optimum for input steps larger than the 

saturation level of the amplifier. It has been observed previously that 

for underdamped systems the hysteresis compensator is not nearly so effec­

tive. This fact is also revealed if one compares the underdamped system 

response with that of a similar time-optimal system. Figure 30 shows a 

comparison of the trajectories of a system having a damping ratio of 0.5 

with a similar time-optimal system. For an initial error of 1.0 units the 

trajectory of the uncompensated system appears to be about as close an ap­

proximation to the optimum trajectory as is possible. In this case a hys­

teresis compensator would only serve to increase the overshoot and would 

increase the settling time. Curves of — versus e shown in Figure 31 cor-
ê 

roborate the conclusions that the hysteresis compensator is not effective 

on greatly underdamped systems. 
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Figure 30. Comparison of compensated and time optimal trajectories 
for system with damping ratio of 0.5 
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Figure 31. Curves of reciprocal error rate versus error for 
compensated and time optimal system with damping 
ratio of 0.5 
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IV. DESIGN OF A HYSTERESIS COMPENSATOR FOR A THIRD-ORDER SYSTEM 

A. Analytical Considerations 

The work done in the previous sections has dealt with the design of 

hysteresis compensation for second-order systems only. An obvious question 

would be whether the technique can be extended to include systems described 

by differential equations of higher than second order. If the saturating 

amplifier characteristic is sectionally linear or can be sufficiently 

closely approximated by a sectionally linear curve, the linear techniques 

discussed in Chapter II are valid and can be used for systems of any order. 

The possibility of a purely graphical procedure seems unlikely since the 

construction of a phase-space trajectory for a system of third or higher 

order is difficult. However, it would be possible to obtain a set of curves 

of velocity versus position (the projection of the phase-space trajectory 

onto the e and ê axes) similar to trajectories 1, 2, and 3 of Figure 3. 

Such curves could then be used to choose the optimum dropout point for the 

compensator just as was done in the second-order systems previously dis­

cussed. 

Another approach to the problem of analyzing a third-order system for 

the purpose of designing a conçensator would be to make use of the fact 

that the characteristics of a large number of higher order systems are de­

termined largely by the location of the control poles in the complex 

s-plane (l3). If it can be assumed that the system will behave very sim-

ilarily to an equivalent second-order system, a nonlinear compensator can 

be designed whose dropout point is determined as illustrated in the pre­
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vious examples. While this approach is certainly not rigorous, it might be 

useful for making a preliminary design. 

B. Use of the Analog Conputer to Design a Hysteresis 

Compensator for a Third-Order System 

An attempt will be made to design a hysteresis compensator for a 

third-order position control system that will make the system as close as 

possible to the time-optimal system as discussed in Section III. Bogner 

and Kazda (l4) have shown that under certain conditions, n-1 switching 

boundaries are required for time-optimum, transient response to a step-

function input for a stable nth-order system with real roots. Kalman (5) 

states that, in practice, the first reversal of polarity is the most signif­

icant for most systems and that usually a very good approximation to the 

optimal response can be obtained by having one reversal of polarity and 

providing a region of linear operation near the origin of the phase-space. 

The other optimal reversals usually occur in that region. If the system 

under consideration is heavily dan̂ jed, it quickly reaches its velocity 

limit. During the time when the system is velocity-limited the accelera­

tion is zero and the phase-space trajectory lies in the e, ê plane at the 

time when the first switching boundary is reached. It follows that an ap­

proximation can be made to the optimum deceleration trajectory by setting 

the initial conditions of the open-loop system at the proper value and ap­

plying a constant voltage of the correct polarity and magnitude to the in­

put. The velocity-versus-position curve is then recorded using a x-y plot­

ter. Usually after a few trials, the initial conditions can be set to ob­

tain a trajectory that passes through the origin. This trajectory will be 
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assumed to be a good approximation to the optimal trajectory. 

The system to be analyzed consists of a linear plant having a trans­

fer function of 

G(8) = 0.56 (11) 
s (8+1.2)(8+2.1) 

in series with a saturating amplifier of the same type as shown in Figure 

2. The parameters were chosen to give a system very nearly critically 

damped in order to illustrate the method under conditions which are fav­

orable to the use of a hysteresis compensator. The system was simulated 

on an analog computer and the approximate optimal deceleration trajectory 

was obtained by setting the initial values of position and velocity and 

providing a constant forward-loop voltage equal to the saturation voltage 

in such a way as to drive the system trajectory through the origin along an 

approximately optimal trajectory. This trajectory was recorded on an x-y 

plotter and is shown in Figure 32. 

The second step is to record on the same set of axes compensated tra­

jectories with several different dropout points. In Figure 32 trajectories 

are recorded for dropout points of 0.1, 0.125 and 0.175 units. An inspec­

tion of Figure 32 reveals that of the three after-dropout trajectories the 

trajectory for a dropout point of 0.125 units seems to most closely approx­

imate the optimal trajectory. 

A dropout point of 0.125 units will be chosen. The time responses for 

the uncompensated system, the conçensated system, the linear system with 

no saturation present, and the approximate time-optimal system are shown 
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in Figure 33-

The results show that for this system it was possible to design a 

hysteresis compensator that gave results very near to those of the time-

optimal system. The results also show that the effect of the hysteresis 

coijçensator on a third-order system is essentially the same as on a second-

order system. The chief difference in the design procedure is that direct 

graphical calculations cannot be used for the third-order system. 
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Figiire 32. Recorded curves of error rate versus error used for determination 
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Figure 33. Error responses for third order system: (l) un-
conçensated, (2) compensated, (B) linear 
system, and (4) optimal 
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V. RAEDOM SIGNALS APPLIED TO A HYSTERESIS-COMPENSATED SYSTEM 

A. Calculation of the Output Probability Density Distribution 

An amplitude-nonlinear element such as discussed in this dissertation 

introduces distortion of the input signal. Passing a random signal through 

a nonlinear device changes the probability density distribution of the out­

put with respect to that of the input. Analysis of the performance of the 

hysteresis-compensated limiter with random inputs is complicated by the 

fact that the input-output characteristic of the hysteresis element is not 

a single-valued function. The-problem here seems to resolve itself into 

finding the output probability density distribution of the nonlinear ele­

ment if one is given the probability density distribution of the input. 

This has been done by a number of authors for a single-valued nonlinear-

ity but is considerably more difficult when the nonlinearity is double-

valued. 

Let us consider a nonlinearity of the hysteresis-type such as shown 

in Figure 3̂ - It will be assumed that the input to the hysteresis element 

has a probability density distribution, P(y), and the probability density 

distribution of the output, P(z), will be calculated. The input probabil­

ity density distribution will be divided into two portions, P̂ Cy) and 

P̂ (y), each of which sees a different, single-valued nonlinearity. Py(y) 

sees the nonlinearity of Figure 35 while P̂ (yj sees the nonlinearity of 

Figure 36. 

The ratio of Py(y) to P̂ (y) is given by the following equation 
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Figure Input-output characteristic of hysteresis compensated 
limiter 

-S 

Figure 35- Nonlinearity seen 
by P^(y) 

Figure 36. Nonlinearity seen 
by \iy) 
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P„Cy) 

CO 

J P(y) dy 

2 

 ̂ P(y) dy 

(12) 

The above ratio will be defined as m. 

Since 

p(y) = Pu(y) + (i3) 

the following relationships can be obtained. 

p̂ fy) = ( ) P(y) (i4) 

and 

(15) 

The output probability density distribution, P(z), will also be expressed 

as the sum of the output probability density distributions from Figure 3 5 ,  

Py(z), and Figure 36, Pĵ (z). Py(z) and P̂ ẑ) are related to P(y) by the 

following equations. 
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_m 
1 + m P(y) 

—— \ 1 + m ; 
\ s. 

P(y) <ay 6(z - ŝ ) 

0 < z < 8 
1 

(l6) 

z ̂  S, 

Where 6(z - Ŝ ) is the Dirac delta function. 

Pl(-) .  
1 + m P(y) 

J: \ P(y) dy 6(z -
1 + m 

\ 8, 

=2) 

0 < z < 8 
2 

(17) 

z - 8. 

The output probability density distribution will be the sum of P̂ ẑ) and 

P̂ (z) or 

P(z) 

V 

P(y) 

1 + m 

m 
1 + m 

P(y) 

0 < z < 8, 

8i < z < 82 

p(y) dy + 
1 + m P(y) dy 

(18) 

5(z _ Elg) 

z - S, 

Since P(z) is an even function of z it will not be necessary to define it 

for negative values of z. Figures 37, 38, and 39 show the curves of Py(z), 

P̂ (z), and P(z) assuming 
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A A, 

5, % 

Figure 37. versus Z 

h 

Figure 38. P^^Z) versus Z 

Figure 39. P(Z) versus Z 
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- y 

P(y) = 
27 

rVÊTT 
(19) 

B. Calculation of the Equivalent Gain of the Nonlinear Element 

The equivalent gain of a nonlinear element, will be defined as 

the ratio of the root-mean-square value of the output to the root-mean-

square value of the input when the input probability density distribution 

is Gaussian. K is a "statistical describing function" and is a func-
eq 

tion of 0" , the root-mean-square value of the input. 

1. Calculation of ̂ z for the compensated system 

z ̂  e 2  ̂ P(z) dz 

0 

Tz " 

ri/̂  

2 
z e 

-

dz -f- L _ r  
+ m j 

2 
z 

2 z e dz 

m 
1 + m 

_ y m _ 

2?2 ( 2̂ 2 
e dy + \ e dy 

S„ 

(20a) 
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Equation 20 can be written in the form 

2 
^ z 

2 

 ̂2 -2'-" 1 
\ z e dz "t-

1 + m ' 
z2 e 

2 

-

Lo 

e ' 1 + m 

2 
I-

dz -

y 

(20b) 

e dy + \ e dy 

Collecting terms we have 

Tz^ = 
1 

2 (1 + m) 

2 

(  ̂2 -
m \ z e  d z + \ z e  dz 

+ I m 
" 2T̂  
e dy + 

1 

dy ) (21) 

It can be shown by integration by parts that 

s S 

z e dz = y [ -Ŝ  e + j e dz 

0  ̂
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-2 (r) 
(23) 

For the sake of brevity Equation 23 will be written in the following form: 

l(^) =T[-:pU + W] +R[--p V+Y] + TX-£-RZ (24) 

where R, T, U, V, W, X, Y and Z are defined by Equations 23 and 2 k .  

2. Calculation of Vz for the uncompensated system 

e „ 0 < z < 
P(z) CO _ / 2 \ (25) 

I e dy 6(8 _ 8 ) z > 8 
Tifgff 2 
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and 

Til^ I  " " X r t & . i  
dy 

!(» 
e  ̂

f -Kff 

_ Til2T TT 
0 

(I) 

J 1 ,r" 
T (r) 

|/Sf 
d (Ï) (26) 

Thus we can obtain 

2 - i f — )  -  -  -  f - )  ̂  

Kv) ' ";É p ' 

0 

2̂ 1 > 2 
2 . - -2 (i) 

'  (N I' '  
-co 

Again for brevity we write 

A + B + C (28) 

where Equations 27 and 28 define A, B and C. The calculation of K for 
' eq 

both the compensated and uncompensated systems is now straightforward, but 
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tedious, and is shown in tabulated form in Tables 13 through 19 with a 

summary of the results shown in Table 20. 

3. Results 

The results of the calculations of the statistical describing func­

tions, K , are plotted in Figure 39 for the compensated and uncompensated 
eq. 

systems as a function of T". For the curves plotted, the dropout point of 

the hysteresis compensator, Ŝ , was set at 0.12 units and the saturation 

level of the limiter was 0.5 units. 

The output amplitude probability density distribution of a nonlinear 

element that is subject to a Gaussian input is not Gaussian. It has been 

shown by a number of authors, among them, Chaung and Kazda (15) and Rice 

(16) that the average feedback control system behaves like a low-pass fil­

ter and has a tendency to redistribute the signals in such a way as to pro­

duce a Gaussian form. This idea leads to the assumption that the output 

of a nonlinear element in a feedback control system, when fed back through 

frequency sensitive elements and combined with a Gaussian input signal, 

produces a Gaussian error signal. It is necessary that the above assump­

tion be made in order to proceed with the analysis of the error response of 

a nonlinear system when subjected to a Gaussian input. 

C. Equivalent Gain Error Response 

Thaler and Pastel (ll) outline an approximate method for calculating 

the system response of a nonlinear control system subjected to a random in­

put. It consists of replacing the nonlinear element by a linear element 

whose gain is (the statistical describing function). is a func­

tion of the root-mean-square value of the signal at the input of the non-
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Table 13. Calculation of for the compensated system 

0 

.25 .48 2.0 0.1844 0.3156 0.4772 .0228 

.50 .24 1.0 0.0948 0.4052 0.3413 .1587 

.75 .16 .67 0.0636 0.4364 0.2486 .2514 

1.00 .12 .50 0.0478 0.4522 0.1915 .3058 

1.25 .096 .40 0.0382 0.4579 0.1554 .3446 

1.50 .080 .333 0.0319 0.4867 0.1305 .4695 
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Table l4. Calculation ofVz for the compensated, system 

T" m R U -S U 

V 
w ^ + vij Tpl u + w] 

0 

.25 0.0334 0.986 0.032 .48 .3555 -0.17 0.1844 0.0144 .00046 

.50 0.267 0.790 0.210 .24 .3876 -0.093 0.0948 0.0018 .000378 

.75 0.447 0.692 0.308 .16 .3939 -0.063 0.0636 0.0003 .000093 

1, .00 0.564 o.64o 0.360 .12 .3961 -0.0475 0.0478 0.0003 .000108 

1, .25 0.640 0.610 0.388 .096 .3970 -0.6382 0.0382 0 0 

1, .50 0.881 0.532 0.468 0
 

0
0
 

0
 

.3977 -0.0320 0.0319 0 0 
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Table 15. Calculation ofTz for the compensated system 

V"  ̂~ ®  ̂ V  ̂ V + Y) +Y) 

0 

.25 0.0334 0.968 2.00 0.0540 -0.1080 0.4772 0.3692 0.3580 

.50 0.267 0.790 1.00 0.2420 -0.2420 0.34l3 0.0993 0.0784 

.75 0.447 0.692 0.67 0.3187 -0.2137 0.2486 0.0347 0.0240 

1.00 0.564 o.64o 0.50 0.3521 -0.1760 0.1915 0.0155 0.0099 o& 

1.25 0.640 0.610 o.4o 0.3683 -0.1475 0.1554 0.0079 0.0051 

1.50 0.881 0.532 0.333 0.3773 -0.1255 0.1305 0.0050 0.0026 
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Table 16. Calculation of Vz for the compensated system 

y 
T 

CM 

CM X X R z z 

0' 

.25 0.032 .25 0.3156 o.o4o 0.968 .25 0.0228 0.0880 

.50 0.210 .25 0.4052 0.0852 0.790 .25 0.1587 0.1250 

.75 0.308 .25 0.4364 0.0597 0.692 .25 0.2514 0.0775 

1.00 0.360 .25 0.4522 o.o4ii 0.640 .25 0.3085 0.0494 

1.25 0.388 .25 0.4579 0.0285 0.610 .25 0.3446 0.0336 

1.50 0.468 .25 0.4867 0.0253 0.532 .25 0.4695 0.0278 
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Table 17. Calculation of for the conipensated system 

r H[-iv.Y] T(s/ X Bts/ 2 ^ 

0 1.000 1.000 

.25 0.00046 0.358-- o.okok- 0.0880- 0.48686 0.97362 0.987 

.50 0.000378 0.078400 0.0852-- 0,1250-- 0.288978 0.577956 0.760 

.75 0.000093 0.02k--- 0.0597-- 0.0775 0.161293 0.322586 0.568 

1.00 0.000108 0.0099-- o.o4ii-- o.ok^k-- 0.100508 0.201016 0.450 

1.25 0 0.00510 0.0285- 0.0336- .06720 0.13440 0.367 

1.50 0 0.0026 0.0253 0.0278 .0557 0.1114 0.334 
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Table l8. Calculation of for -anconçiensated system 

IT" G2/^_ A B C 

.25 2.0 - .1080 .4772 .0912 

.50 1.0 - .2420 .3413 .1587 

.75 .67 - .2135 .2486 .1120 

1.00 .50 - .1761 .1915 .0772 

1.25 .40 - .1473 .1559 .0550 

1.50 .333 - .1257 .1300 .o4ii 
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Table I9. Calculation of K for uncompensated system 

1 

^ (V~y)' (S) r z/r/- = K 
eq 

.25 

.50 

.75 

1.00 

1.25 

1.50 

.i)6o4 

.2580 

.1371 

.0926 

.06311 

.6454 

.9208 

.5160 

.2742 

.1852 

.1262 

.0908 

0.96 

0.72 

0.523 

0.430 

0.356 

0.301 
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Table 20. Comparison of for compensated and uncompensated systems 

8̂  a 0.12 8g = 0.5 

Y— Uncompensated Compensated 

0 1.00 1.00 

0.25 0.960 0.987 

0.50 0.720 0.760 

0.75 0.523 0.568 

1.00 0.430 0.450 

1.25 0.356 0.367 

1.50 0.301 0.334 
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linear element and is plotted versus (T in Figure 40a. 

The system to be analyzed is shown in Figure 4l. From the diagram it 

caxi be seen that the error signal which is also the input to the nonlinear 

element is 

s(s + 2 Y ) R(S) (29) 

ŝ  + 2 S s + K 
eq 

It will be assumed that the system is subject to a random input with 

Gaussian distribution and a power frequency spectrum given by 

= 1 • 1 (30) 
1 + OUD 1 - jW 

The power frequency spectrum of the error signal is 

0g(w) = [(jw)2 + 2 r ju3][(-jœ)̂  - 2 3jw] 

[(jw)̂  + 2 J juj + K ][1 + jw][(-jw)̂  -2 J jw + K ][l - j(u] 

or 

2 2 
0g(w) =  ̂̂  ^ 

-(1+2 T + j(K + 2 J )u) + K ][ Conjugate ] 
eq eq 

E(s) = R(s) 
1 + G(sJ H(s} 

(31) 
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Figure 40a. versus!^ for compensated and uncompenBated systems 
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Figure 40b. Curves of K calculated from Equation 35 superinçosed 
on expanded̂  ̂portion of Figure 40a 
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Figure 4l. Second order system with random input 
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Thus the mean-square value of the error signal is 

= _l I J ̂  

 ̂̂ [-jm̂  -(l+2jr)(jû  + j(K + 2 j')œ + K ][ Conjugate ] 
- eq eq 

(32) 

This integral is of the form discussed by Brown and Nilsson (l?) 

T - \ n̂̂ )̂ dx 
n ~ \ ĥ (x} ĥ (-x) 

-00 

where 

, / \ n . n-x , h(x; = a X + â  x +... + a 
n̂  o 1 n 

ĝ (x) = x2n-4 + ... + 

here 

*0 = -j ô = j 

â  ̂= -(l + 2%) b̂  = j4 

*2 = jf̂ eq + 2 3 ) tg = ̂  

&3 = ̂ eq (33) 
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The value of the integral is given as 

_a b + a t. _ 
I3 = ^3 (34) 

2*0 (*o *3 - *1 sg) 

After substitution and simplification the integral is evaluated as 

. 2 K + 2Ï(l + 2 3) 
ITE = i_ = (35) 

^ 4Ï(1+2Ï+K ) 
eq 

From Equation 35 the gain, K , can be expressed as a function of the root-
eq 

mean-square value of the input to the nonlinear element which is also the 

system error. 

Figure 40a and Equation 35 give two relationships to be satisfied by 

simultaneously for the given input signal. Analytic solution of the 

two equations is not feasible but a simultaneous solution can be obtained 

graphically by plotting curves of versus y for Equation 35 on the same 

sheet of paper with the curve of Figure 40a. The intersection of the two 

curves gives the root-mean-square error of the system. 

In Figure 40b an expanded portion of the curves of Figure 40a are 

plotted along with curves calculated from Equation 35 for daniping ratios 

of 0.1, 0.5, 1.3 and infinity. Table 21 gives the calculated results used 

for plotting the curves. The curves for a damping ratio of 0.5 and infin­

ity are vertical lines at 7"= 0.707. The curves for all dançing ratios be­

tween 0.5 and infinity lie between the vertical line at IT = O.707 and the 

curve for a damping ratio of I.3 and have a negative slope. Curves for all 
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K 1.0 0.8 0.6 0.4 0.2 0 
eq 

f = 0.1 1.19 1.14 1.08 1.00 0.89 0.707 

5 = 0.5 0.707 0.707 0.707 0.707 0.707 0.707 

= 1.0 0.662 0.670 0.677 0.686 0.695 0.707 

5 = 1.3 0.660 0.666 0.674 0.685 0.695 0.707 

" 0.707 0.707 0.707 0.707 0.707 0.707 
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dairying ratios less than 0.5 lie to the right of the T - 0.707 line and 

have a positive slope. 

The curves of Figure 40b predict that for a random input to the sys­

tem an increase in the equivalent gain would reduce the root-mean-square 

value of the erroi signal for the system studied if the damping ratio is be­

tween 0.5 and infinity, with the maximum reduction occurring for a danrping 

ratio in the vicinity of 1.0. The value of damping ratio at which the max­

imum reduction occurs is a function of K at the point of intersection of 
eq 

the curves. It can be found by taking the derivative of (V"E)̂  with re­

spect to the damping ratio, setting the result equal to zero and solving 

for the damping ratio. 

The calculations are as follows: 

à{T^) _ _A. _eg 

8 32 + 4 3(K + 1) 
eq 

d(rE) 8% 2 + (4 ][8f+ 2]-[K̂ +̂ 2: + 4̂ ]̂[i6ï+ 

[8J 2 + 4S(K + 1)]2 
eq 

_ea_ 

(36) 

Setting the numerator equal to zero and solving for "J we can obtain 

"S = 0.5 - 0.5 l/TTlc eq (37) 

The possibility of a negative value for U will not be considered due to the 

nature of the problem and thus the value of J which will give a minimum 
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value of root-mean-square error is 

3 (Mn.error) = 0-5 ̂  0-5 (38) 

If a value of a 0.6 (the approximate value of at the operating 

point of the system) is substituted into Equation 38, the value of damping 

ratio -which will give a minimum error is approximately 1.3. 

For values of damping ratio smaller than 0.5 Figure 40b predicts that 

an increase in equivalent gain such as produced by a hysteresis compensator 

would have a tendency to increase the root-mean-square error for a random 

input. 

The preceding results do not show a significant change in error pro­

duced by the hysteresis compensator. It would appear from the above analy­

sis that the hysteresis-compensated system with a damping ratio larger than 

0.5 would be only very slightly more susceptible to a random noise signal 

at the input than would the uncompensated system. An interesting observa­

tion is that the range of values of damping ratio for which the hysteresis 

compensator is capable of reducing the root-meaxi-square error for a random 

input is precisely the range of values for which it has been found to be 

effective in improving the step response. 
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VI. SUMMARY 

In the preceding sections the use of the hysteresis element to compen­

sate for saturation in a position-control servomechanism has been studied 

for the purpose of: 

1. Determining the conditions under which such a compensator can be 

effective. 

2. Arriving at an orderly design procedure which allows one to quick­

ly design a hysteresis coitpensator that will be effective. 

The effectiveness of the hysteresis compensator was found to depend 

chiefly on two factors, the damping ratio of the system, and the magnitude 

of the input steps relative to the saturation level of the system. The 

hysteresis compensator was found to be effective for systems with damping 

ratios larger than 0.5, becoming more effective as the damping of the sys­

tem is increased. For critically damped and overdamped systems, it was 

found possible to design the hysteresis compensator in such a way as to 

give a step response very close to the time-optimal response for the system. 

The hysteresis compensator was not found to be effective in improving the 

step-input performance of systems with damping ratios smaller than 0.5. 

The amount of iirprovement possible in the settling time of a heavily 

damped system was found to be practically a constant value for inputs 

large enough that the system became velocity-limited before the dropout 

point was reached. This means that the percentage improvement in time of 

response decreases as the input steps are increased to large values. 

In Section IV the method of design was extended to apply to a third-

order system through the use of an analog computer. The design pro­
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cedure and results were found to be essentially the same for the third-

order system as they were for the second-order system. 

î̂ nally, an estimate of the response of a hysteresis-compensated sys­

tem to a random input was obtained in Section V. Tlie results of this anal­

ysis indicate that the use of a hysteresis element would have little, if 

any, effect on the susceptibility of the system to random noise. 

In concluding, it can be said that the hysteresis compensator, like 

most nonlinear compensators, has definite limitations on its usefulness. 

It can be useful to improve the step response for a system made sluggish 

by inherent saturation or it can be used to achieve improved performance of 

control systems with less cost by operating the elements at their maximum 

capabilities which almost always implies saturation of some element of the 

system. Although the hysteresis compensator is a form of nonlinear compen­

sator designed primarily to in̂ prove step-input performance, it does not, 

like some nonlinear compensators,have a detrimental effect when the input 

is something other than a step input. 
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